EL BARRANC DEL CARRAIXET.
ESTUDIO GRANULOMETRICO Y MORFOMETRICO

INTRODUCCION

El Barranc del Carraixet nace a 750 m de altitud al S de la provincia de Castellón y desemboca al N de la ciudad de Valencia, después de recorrer 52.5 Km con una pendiente media del 1.45 %.

Con una extensión superficial de 290 Km², la orografía que nos ofrece la cuenca del Carraixet es en extremo variada y compleja, pudiéndose distinguir a primera vista dos zonas completamente diferentes:

Por el lado N y NW nos encontramos la serie de estrechos valles y montañas que, en buena parte, han sido dislocados por una tectónica de tipo sajón. En contraposición, la parte baja es una llanura cuaternaria, salpicada por algunos cerros miocenos, que, en definitiva, ocupa la mayor extensión de la zona que estudiamos.

LITOLOGIA Y ESTRUCTURA

Casi la totalidad de la zona montañosa se encuentra formada por afloramientos triásicos en facies germánica típica. Se encuentra muy desarrollado el Trías inferior, mientras que el espesor del Keuper disminuye mucho.

Efectivamente, el Buntsandstein predomina ampliamente, bien en forma de areniscas rojas (rodeno) y amarillentas, que son explotadas en numerosas canteras (lámc. I, fig. 1), bien como arcillas rojas con intercalaciones de arenisca y como arcillas abigarradas a las que BRINKMANN les encontró un gran parecido con el Röt alemán. Le siguen en importancia los afloramientos de Muschelkalk y del Suprakeuper, que es el que corona las máximas alturas, mientras que el Keuper queda reducido a unas manchas que se concentran sobre todo al E de Olocau y al W de Marines. Es también de importancia
Fig. 1.—Croquis geológico de la cuenca del Barranc del Carraixet. (Se ha utilizado toda la cartografía existente.) Q = Cuaternario; P = Plioceno y Pontiense; L = Liálico; Sk = Suprakeuper; Tk = Keuper; Tm = Muschelkalk; Tb = Buntsandstein.
la situada al N del monasterio de Portacoeli, que se halla en contacto con el Suprakeuper a favor de una falla.

Al descender por la cuenca nos encontramos el Mioceno, que es la formación más amplia, y el Cuaternario, constituido fundamentalmente por sedimentos recientes, consistentes en cantos rodados, arenas, margas y arcillas, aunque, por otra parte, ocupando menos extensión, se encuentran conglomerados y brechas más o menos cementados, que pertenecen al Pleistoceno (lámin. I, fig. 2), formando un extenso glacis cubierto de brechas encostradas de 15 a 50 cm (costra laminar de 1 a 2 cm y conglomerado semianguloso de matriz color salmón, con cantos heterométricos de 0'5 a 5 cm), que se extiende desde la Serra de Portacoeli hasta el mismo barranco (pinares de Bétera, La Mallada, etc.).

En la playa, donde desemboca, la acumulación es en su totalidad de arenas muy finas, pues las pequeñas gravas existentes están muy diseminadas y no suelen pasar de 5 cm de diámetro (lámin. II, fig. 2). También existen formaciones de dunas, entre las cuales se practican algunos cultivos. Sin embargo, es preciso señalar la existencia de sedimentos más antiguos, pues en La Torre (NW de Alboraya) se encuentran, dentro del cordón de gravas aterrazado, fragmentos de un banco conglomerado blancuzco.

La zona estudiada, en su parte montañosa, está cruzada por dos direcciones opuestas de pliegues: los correspondientes al sistema Ibérico y las últimas estratificaciones de las Cordilleras Béticas. Esto implica que además existan importantes fracturas, que sitúan en algunas ocasiones las areniscas del Buntsandstein a mayor altura que las calizas del Muschelkalk.

Por lo que se refiere a la llanura, Brinkmann habla de una penillanura en las calizas pontienses y el Muschelkalk y de una planicie de arrasamiento en las mesetas pliocenas, que cerca de Valencia se encuentra a una altitud de 100-150 m y, al ascender suavemente hacia los montes, llega hasta los 200 metros. En algunos lugares (Nàquera y entre Liria y Olocau), la rasa se ha doblado por una flexura, y hacia los 700 u 800 m de altitud se continúa en forma de penillanura.

CLIMA Y ESCORRENTIA

En el estudio de las precipitaciones han sido analizados los datos para un período de veinte años (1950-69) de los observatorios de Casinos, Gilet (Santo Espíritu), Serra y Valencia (Viveros). Para las temperaturas hemos adoptado el mismo período en los observatorios de Gilet (Santo Espíritu) y Valencia (Viveros).

El clima de la cuenca es el típico mediterráneo, con el máximo de precipitaciones en otoño (octubre) y el mínimo en verano (julio), y con una temperatura media en enero superior a 10º C.

La pluviometría media anual en Casinos es de 400 mm y 28.9 días de lluvia; en Gilet, de 556 mm y 60.3 días; en Serra, de 522 mm y 40 días, y en Valencia, de 461 mm y 76.7 días. El coeficiente de irregularidad interanual es poco elevado: Casinos, 3.5; Gilet, 2.8; Serra, 2.3, y Valencia, 3.5.

En cuanto a temperatura media, Gilet registra 16.6º C, y Valencia, 17.1º C, siendo el mes más frío enero (Valencia, 10.7º C, y Gilet, 10.1º C de media) y el más caluroso agosto (Valencia, 24.7º C, y Gilet, 24.1º C). En Valencia, el año más caluroso del período observado es 1966, con 17.9º C, y el más frío es 1969, con 15.5º C, por lo que la oscilación térmica anual es sólo de 2.4º. En Gilet el año más cálido fue 1952, con 18.9º C, y el más frío, 1956, con 14.5º C, con oscilación térmica anual algo más elevada (4.4º). Sin embargo, las amplitudes térmicas mensuales son de 14º C para ambos observatorios.

Según el Regenfaktor 40 de Lang, podemos clasificar tanto a Gilet (33.4) como a Valencia (26.9) dentro del clima árido. Con el índice termopluvimétrico de Dantín Cereceda y Revenga Carbonell, Valencia (3.7) se sitúa dentro de la España árida, y Gilet (2.9), en la semiárida.

Los afloramientos del Calatravo se reducen a la estación que estuvo enclavada en Olocau durante el período 1911-1920. Los datos nos indican que suele llevar agua durante algunos meses del año (sobre todo en septiembre, octubre, noviembre y diciembre), aunque la corriente es exigua. El caudal medio durante

la serie de nueve años es sólo de 0'077 m³/seg., con un caudal medio específico de 0'48 l/seg./km², pues la extensión de la cuenca aguas arriba de la estación es sólo de 161 Km².

GRANULOMETRIA Y MORFOMETRIA

En el caso de nuestra investigación, la toma de muestras ha sido efectuada en once estaciones para la fracción comprendida entre 20 y 60 mm, y en trece, para la inferior a 2 mm.

Fig. 3.—Gráficas pluviométricas y termopluvimétricas
En el cauce del Carraixet, propiamente dicho, se encuentran las estaciones: número 3, localizada un kilómetro al N del límite provincial de Valencia con Castellón; la 2, unos dos kilómetros al N de Olocau; la 4, situada unos cuatro kilómetros al S de Olocau, junto al cruce de la carretera de Bétera a Olocau con el Carraixet (en esta estación fueron tomadas dos muestras de arena, una en el centro del cauce y otra en una terraza de 1'5 m de altura); la estación 5 queda ubicada a unos dos kilómetros curso arriba de los cuarteles de La Mallada.

En el tramo comprendido entre esta última estación y la desembocadura interrumpimos la toma de muestras, por encontrarse la sedimentación muy alterada como consecuencia de la extracción de gravas utilizadas en la construcción.

En los dos afluentes más importantes del Carraixet emplazamos dos estaciones. En el Barranc de Náquera situamos la número 7, dos kilómetros al S de Serra, y la 8, en la desembocadura del mismo. En el Barranc de Portacoeli o del Cerezo tomamos otras dos estaciones: la número 6 está situada un kilómetro al N del monasterio, y la número 1, en la desembocadura.

En el último tramo del Barranc del Carraixet, a unos 100 m del mar, obtuvimos la muestra número 10 de gravas y las 9B y 9A de arenas, aunque esta última se encontraba levantada sobre la anterior unos 60 cm. La número 9 de cantos y la 9C de arenas, en la playa, unos 600 m al S de la desembocadura del barranco, y la número 11, tanto de cantos como de arena, también en la playa, unos 600 m al N.

Material comprendido entre 20 y 60 mm

Hemos adoptado estas medidas de una forma arbitraria, por lo que será necesario efectuar varias pruebas antes de decidirnos definitivamente por unos tamaños tipo. El número de unidades estudiadas por estación ha sido de 100.

Morfometría

Hemos adoptado los índices de desgaste y aplanamiento aplicados por Cailleux y Tricart:

Índice de aplanamiento: \(L + \frac{l}{2E} \); Índice de desgaste: \(2.000 \times r/L \)

Según estos índices, el aplanamiento estará comprendido entre uno e infinito, aunque raramente suele ser superior a 4 ó 5, y el desgaste, entre 0 y 1.000, que es el que tendría si fuese una esfera perfecta.

1) Desgaste

En el índice de desgaste o rodamiento intervienen varios factores: la distancia, el medio de transporte, la litología, la pendiente y el clima. Sin
1. Cantera de rodeno, utilizado como piedra de construcción, al N de la Fuente del Oro, en la cuenca del Barranco de Náquera.

2. Conglomerados y brechas del Pleistoceno ocupando el cauce del barranco, aguas abajo de Bétera.
1. Lecho del Carraixet, formado por cantos muy heterométricos, junto a la carretera que va de Bétera a Olocau.

2. Desembocadura del Carraixet en una playa arenosa con escasas gravas dispersas.
embargo, la mayor distancia recorrida no implica un aumento del redondeamiento, pues cuando se ha alcanzado un cierto desgaste, las variaciones son muy pequeñas.

Las variaciones de las medias de unas estaciones a otras son bastante sensibles (oscilan entre 248'52 en la estación número 7 y 390'24 en la número 10), pero en general dan valores altos.

Al establecer en cada una de las muestras la relación entre el tamaño y el desgaste (cuadro II), observamos que, al aumentar la dimensión (L) del canto, el desgaste disminuía. Sin embargo, no veíamos muy clara esta correspondencia por alterarse en algunos casos, y para salir de dudas se calculó la

Cuadro I

<table>
<thead>
<tr>
<th>Md.</th>
<th>303'7</th>
<th>269'69</th>
<th>275'89</th>
<th>239'04</th>
<th>269'75</th>
<th>255'43</th>
</tr>
</thead>
<tbody>
<tr>
<td>% < 100 . .</td>
<td>6</td>
<td>2</td>
<td>8</td>
<td>11</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>100-200 .</td>
<td>14</td>
<td>19</td>
<td>26</td>
<td>24</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>200-300 .</td>
<td>29</td>
<td>36</td>
<td>29</td>
<td>33</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>300-400 .</td>
<td>25</td>
<td>19</td>
<td>31</td>
<td>24</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>400-500 .</td>
<td>14</td>
<td>11</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>> 500 .</td>
<td>12</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Md.</th>
<th>200-300</th>
<th>200-300</th>
<th>300-400</th>
<th>200-300</th>
<th>200-300</th>
<th>200-300</th>
</tr>
</thead>
<tbody>
<tr>
<td>% < 100 . .</td>
<td>576'92</td>
<td>681'81</td>
<td>622'22</td>
<td>491'22</td>
<td>647'05</td>
<td>491'22</td>
</tr>
<tr>
<td>100-200 .</td>
<td>65'21</td>
<td>75'00</td>
<td>50'00</td>
<td>53'33</td>
<td>75'47</td>
<td>104'76</td>
</tr>
</tbody>
</table>

Cuadro II

<table>
<thead>
<tr>
<th>Md.</th>
<th>248'52</th>
<th>322'22</th>
<th>344'63</th>
<th>390'24</th>
<th>362'96</th>
</tr>
</thead>
<tbody>
<tr>
<td>% < 100 . .</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100-200 .</td>
<td>24</td>
<td>13</td>
<td>11</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>200-300 .</td>
<td>37</td>
<td>26</td>
<td>32</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>300-400 .</td>
<td>24</td>
<td>33</td>
<td>32</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td>400-500 .</td>
<td>4</td>
<td>16</td>
<td>9</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>> 500 .</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td>18</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Md.</th>
<th>200-300</th>
<th>300-400</th>
<th>200-300</th>
<th>400-500</th>
<th>300-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>% < 100 . .</td>
<td>648'64</td>
<td>893'09</td>
<td>653'00</td>
<td>640'00</td>
<td>882'35</td>
</tr>
<tr>
<td>100-200 .</td>
<td>77'27</td>
<td>120'00</td>
<td>140'35</td>
<td>117'64</td>
<td>118'18</td>
</tr>
</tbody>
</table>

media de todos los cantos en cada uno de los tamaños de la totalidad de las muestras, cuyos resultados se exponen en el cuadro III. La conclusión a la que hemos llegado, aunque las diferencias son pequeñas, es que el desgaste aumenta al disminuir el tamaño de los cantos.

Hemos de advertir que, para que estos resultados adquieran solidez y, sobre todo, para su recta interpretación, será necesario el análisis de un número más elevado de elementos recogidos en diferentes ramblas.

Sin embargo, de momento podemos hablar de unas diferencias existentes entre desgaste en ríos de clima subárido, o más concretamente mediterráneo, y otros con precipitaciones más frecuentes, pues parece ser que en estos últimos existe una relación muy marcada entre la redondez y el tamaño. Datos que apoyan estas afirmaciones los han obtenido PATTOJOHN y LUNDAHL (1943) con arenas de playas; Rusell y Taylor (1938), con arenas del río Mississippi,

Cuadro II

Índices de desgaste y aplanamiento según tamaños

<table>
<thead>
<tr>
<th>L_{em}</th>
<th>L_0</th>
<th>L_{+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30</td>
<td>385'61</td>
<td>1'60</td>
</tr>
<tr>
<td>31-40</td>
<td>303'94</td>
<td>1'90</td>
</tr>
<tr>
<td>41-50</td>
<td>279'61</td>
<td>2'04</td>
</tr>
<tr>
<td>51-60</td>
<td>228'35</td>
<td>2'10</td>
</tr>
<tr>
<td>Media total</td>
<td>303'61</td>
<td>1'90</td>
</tr>
<tr>
<td>20-30</td>
<td>274'89</td>
<td>1'79</td>
</tr>
<tr>
<td>31-40</td>
<td>304'34</td>
<td>2'04</td>
</tr>
<tr>
<td>41-50</td>
<td>345'50</td>
<td>1'83</td>
</tr>
<tr>
<td>51-60</td>
<td>277'72</td>
<td>2'28</td>
</tr>
<tr>
<td>Media total</td>
<td>303'25</td>
<td>1'98</td>
</tr>
<tr>
<td>20-30</td>
<td>285'27</td>
<td>1'91</td>
</tr>
<tr>
<td>31-40</td>
<td>229'91</td>
<td>1'85</td>
</tr>
<tr>
<td>41-50</td>
<td>299'16</td>
<td>1'79</td>
</tr>
<tr>
<td>51-60</td>
<td>197'82</td>
<td>1'73</td>
</tr>
<tr>
<td>Media total</td>
<td>265'74</td>
<td>1'85</td>
</tr>
<tr>
<td>20-30</td>
<td>225'76</td>
<td>1'97</td>
</tr>
<tr>
<td>31-40</td>
<td>268'31</td>
<td>2'02</td>
</tr>
<tr>
<td>41-50</td>
<td>235'05</td>
<td>1'89</td>
</tr>
<tr>
<td>51-60</td>
<td>205'84</td>
<td>2'12</td>
</tr>
<tr>
<td>Media total</td>
<td>230'54</td>
<td>2'00</td>
</tr>
<tr>
<td>L_{em}</td>
<td>Media 2000 r_1</td>
<td>Media $L+1$</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>$2E$</td>
</tr>
<tr>
<td>E_5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>321'52</td>
<td>1'63</td>
</tr>
<tr>
<td>31-40</td>
<td>327'29</td>
<td>1'82</td>
</tr>
<tr>
<td>41-50</td>
<td>284'70</td>
<td>1'78</td>
</tr>
<tr>
<td>51-60</td>
<td>330'95</td>
<td>1'95</td>
</tr>
<tr>
<td>Media total</td>
<td>319'96</td>
<td>1'74</td>
</tr>
<tr>
<td>E_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>295'66</td>
<td>2'02</td>
</tr>
<tr>
<td>31-40</td>
<td>209'95</td>
<td>1'90</td>
</tr>
<tr>
<td>41-50</td>
<td>265'07</td>
<td>2'20</td>
</tr>
<tr>
<td>51-60</td>
<td>199'23</td>
<td>2'36</td>
</tr>
<tr>
<td>Media total</td>
<td>265'91</td>
<td>2'05</td>
</tr>
<tr>
<td>E_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>306'39</td>
<td>1'66</td>
</tr>
<tr>
<td>31-40</td>
<td>263'46</td>
<td>1'91</td>
</tr>
<tr>
<td>41-50</td>
<td>192'67</td>
<td>1'72</td>
</tr>
<tr>
<td>51-60</td>
<td>276'55</td>
<td>1'62</td>
</tr>
<tr>
<td>Media total</td>
<td>265'21</td>
<td>1'76</td>
</tr>
<tr>
<td>E_8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>379'70</td>
<td>1'86</td>
</tr>
<tr>
<td>31-40</td>
<td>404'50</td>
<td>2'26</td>
</tr>
<tr>
<td>41-50</td>
<td>268'27</td>
<td>2'01</td>
</tr>
<tr>
<td>51-60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Media total</td>
<td>349'01</td>
<td>1'99</td>
</tr>
<tr>
<td>E_9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>346'51</td>
<td>2'64</td>
</tr>
<tr>
<td>31-40</td>
<td>300'56</td>
<td>2'41</td>
</tr>
<tr>
<td>41-50</td>
<td>409'09</td>
<td>3'25</td>
</tr>
<tr>
<td>51-60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Media total</td>
<td>333'06</td>
<td>2'58</td>
</tr>
<tr>
<td>E_{10}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>417'84</td>
<td>1'94</td>
</tr>
<tr>
<td>31-40</td>
<td>297'13</td>
<td>1'84</td>
</tr>
<tr>
<td>41-50</td>
<td>355'83</td>
<td>2'13</td>
</tr>
<tr>
<td>51-60</td>
<td>403'50</td>
<td>2'32</td>
</tr>
<tr>
<td>Media total</td>
<td>378'13</td>
<td>1'94</td>
</tr>
<tr>
<td>E_{11}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>412'56</td>
<td>2'91</td>
</tr>
<tr>
<td>31-40</td>
<td>436'89</td>
<td>2'77</td>
</tr>
<tr>
<td>41-50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>51-60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Media total</td>
<td>417'43</td>
<td>2'88</td>
</tr>
</tbody>
</table>
Cuadro III

Desgaste y aplanamiento, según tamaños, de los elementos de todas las muestras

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Desgaste</th>
<th>Aplanamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30 mm.</td>
<td>331'97</td>
<td>1'19</td>
</tr>
<tr>
<td>30-40 mm.</td>
<td>304'20</td>
<td>2'06</td>
</tr>
<tr>
<td>40-50 mm.</td>
<td>293'40</td>
<td>2'06</td>
</tr>
<tr>
<td>50-60 mm.</td>
<td>265'05</td>
<td>2'06</td>
</tr>
</tbody>
</table>

y Wadell (1935), en las areniscas de la formación St. Peter. Existen también datos que sugieren una relación similar para las gravas fluviales, pues el análisis de las gravas calizas de Rapid Creek, de los Black Hills (cuenca del Missouri), muestra una mayor redondez las comprendidas entre 64 y 32 mm que el material de 32 a 16 mm (Plumley, 1948). También dan resultados parecidos los datos obtenidos por Krumbein (1941), sobre gravas glaciofluviáles del Pleistoceno. Sin embargo, ASENSIO (1968) ha obtenido valores similares a los nuestros en la formación detritica albense de la provincia de Segovia, donde disminuye el desgaste al aumentar las partículas de tamaño.

En las ramblas de Náquera y del Cerezo se observa claramente cómo aumenta el desgaste conforme descendemos por sus cauces. Sin embargo, en el Barranc del Carraixet existen algunas anomalías. La estación número 3 debería tener la mediana inferior a la 2, que se encuentra más baja. La explicación la encontramos en la litología (cuadro VI), pues la muestra posee un alto porcentaje de rodeno y arenisca, material que se fractura con más facilidad que la caliza, con lo cual el índice de desgaste disminuye. En la estación número 3, la proporción de caliza es superior, por lo que el desgaste también aumenta.

Otra anomalía la encontramos en la estación número 4, donde la mediana debería ser superior. Esta disminución obedece a varias causas: la mediana del espectro granulométrico es bastante grande y la moda es de las mayores obtenidas, lo que nos hace pensar que gran parte de los aportes proceden de lugares cercanos (hay un afloramiento de Muschelkalk unos kilómetros aguas arriba); esto nos aclara el porqué del pequeño desgaste sufrido.

En la estación número 5 ya encontramos una mediana superior, y en la desembocadura el aumento se hace muy notable.

La moda de los histogramas se sitúa entre 200 y 300 en todas las estaciones.

5 ASENSIO Amor, J., «Consideraciones sedimentológicas sobre la formación detritica Albense de la provincia de Segovia», Bol. R. Soc. Esp. Hist. Nat. (Geol.), t. 66, n.º 3 (1968). Fig. de la p. 204.
del curso alto y medio, salvo en la estación número 3, que tiene el máximo entre 300 y 400, pero con uno secundario muy próximo que está entre 200 y 300, y otro de 100 a 200 muy cercano también (fig. 4).

En la desembocadura del Barranc de Nàquera y en la del Carraixet, la moda es superior, pues está entre 300 y 400, salvo la muestra número 10, que la tiene entre 400 y 500.

Aunque todos los histogramas tienen una sola moda principal (exceptuando la muestra número 9, que posee dos), destacan también una o dos secundarias, que suelen estar entre 100-200 y 300-400.
Resumiendo, las modas de todas las estaciones figuran entre 100 y 400, mientras que los porcentajes de cantos poco desgastados (<100) y el de los bastante desgastados (>400) son muy pequeños.

En las muestras de la desembocadura, sobre todo la 10 y 11, desaparecen los cantos con desgaste inferior a 100 y aumentan los superiores a 400. Más abajo advertiremos un fenómeno parecido en los guijarros planos. Es curioso observar en las playas marinas cantos redondeados coexistiendo con los aplanados característicos, a la vez que el aplanamiento de estos últimos y el desgaste de aquéllos se hace muy elevado. Esto es debido a que los cantos ya planos resbalan, aplanándose cada vez más, y los cantos redondeados ruedan, por lo que se hacen aún más redondos ⁶.

A la luz de los resultados obtenidos, se puede afirmar que el proceso erosivo al que se han sometido estos sedimentos ha sido muy intenso, aunque debemos tener también en cuenta la litología como un factor fundamental, muy responsable del elevado desgaste de estas gravas, que están formadas por rodeno y areniscas (ambas muy deleznables) y por calizas, que sufren con facilidad descomposición química, que ataca más, naturalmente, los vértices ⁷.

2) **Aplanamiento**

En el Barranc de Carraixet y afluentes, las medias de los índices de aplanamiento varían bastante, sobre todo si comparamos el sector alto y la desembocadura. Los valores oscilan entre 1'67 y 2'76, aunque están casi todos entre 1'70 y 1'90. Podemos clasificar estos sedimentos como muy aplanados, debido, sin duda, al abundante porcentaje de rodeno, que se parte en lajas y favorece este aplanamiento. Ya advierte Vatan que el aplanamiento depende de la naturaleza petrográfica ⁸.

El porcentaje de cantos poco aplanados es superior al de los más aplanados, salvo en las muestras de las playas (estaciones 9 y 10), donde ocurre lo contrario. La media de los cantos comprendidos entre 20 y 30 mm es inferior en casi todas las estaciones a la media total de los tamaños, lo cual se explica por la descomposición en lajas de las areniscas.

El porcentaje de la clase modal del aplanamiento es inferior al de las modas del desgaste, pues mientras que en el primero oscilan entre un 20 y un 30 %, en el segundo están entre el 30 y el 40 %. En consecuencia, los porcentajes de aplanamiento están muy repartidos entre todos los intervalos, en especial en las estaciones de la playa (fig. 5).

Parece que existe una relación inversa entre el aplanamiento y la redondez de los guijarros de playa. Wentworth (1922) supuso que cuanto más desgastado esté un guijarro, mayor será su historia abrasiva, y que los guijarros

Cuadro IV

Indices de aplanamiento

<table>
<thead>
<tr>
<th></th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md.</td>
<td>1'84</td>
<td>1'89</td>
<td>1'67</td>
</tr>
<tr>
<td>% < 1'50</td>
<td>17</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>% 1'50-2'50</td>
<td>71</td>
<td>61</td>
<td>71</td>
</tr>
<tr>
<td>% > 2'50</td>
<td>12</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>M.</td>
<td>1'50-1'75</td>
<td>1'75-2'00</td>
<td>2'00-2'25</td>
</tr>
<tr>
<td>Máx.</td>
<td>3'10</td>
<td>3'83</td>
<td>4'95</td>
</tr>
<tr>
<td>Mín.</td>
<td>1'15</td>
<td>1'18</td>
<td>1'25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E-4</th>
<th>E-5</th>
<th>E-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md.</td>
<td>1'91</td>
<td>1'74</td>
<td>1'90</td>
</tr>
<tr>
<td>% < 1'50</td>
<td>18</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>% 1'50-2'50</td>
<td>67</td>
<td>67</td>
<td>73</td>
</tr>
<tr>
<td>% > 2'50</td>
<td>15</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>M.</td>
<td>1'75-2'00</td>
<td>1'50-1'75</td>
<td>1'50-1'75</td>
</tr>
<tr>
<td>Máx.</td>
<td>4'25</td>
<td>2'69</td>
<td>3'93</td>
</tr>
<tr>
<td>Mín.</td>
<td>1'24</td>
<td>1'09</td>
<td>1'25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E-7</th>
<th>E-8</th>
<th>E-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md.</td>
<td>1'74</td>
<td>1'86</td>
<td>2'29</td>
</tr>
<tr>
<td>% < 1'50</td>
<td>26</td>
<td>27</td>
<td>7</td>
</tr>
<tr>
<td>% 1'50-2'50</td>
<td>71</td>
<td>56</td>
<td>53</td>
</tr>
<tr>
<td>% > 2'50</td>
<td>3</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>M.</td>
<td>1'75-2'00</td>
<td>1'25-1'50</td>
<td>1'50-1'75</td>
</tr>
<tr>
<td>Máx.</td>
<td>2'61</td>
<td>4'15</td>
<td>5'58</td>
</tr>
<tr>
<td>Mín.</td>
<td>1'20</td>
<td>1'20</td>
<td>1'22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E-10</th>
<th>E-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md.</td>
<td>1'79</td>
<td>2'76</td>
</tr>
<tr>
<td>% < 1'50</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>% 1'50-2'50</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>% > 2'50</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>M.</td>
<td>1'50-1'75</td>
<td>2'25-2'50</td>
</tr>
<tr>
<td>Máx.</td>
<td>4'02</td>
<td>4'44</td>
</tr>
<tr>
<td>Mín.</td>
<td>1'37</td>
<td>1'79</td>
</tr>
</tbody>
</table>
más aplanados son los fragmentos menos modificados, pues a mayor desgaste corresponde un menor aplanamiento, ya que la acción del mar tiende más a destruir que a aplanar guijarros 9.

Existe esta relación en las estaciones 9 y 11, situadas en la playa, pues aunque en la número 9 el aplanamiento de las gravas comprendidas entre 40 y 50 mm es bastante elevado, no lo podemos tener en cuenta, puesto que este grupo está solamente formado por un canto (cuadro II). Sin embargo, la comparación que aquí hacemos tampoco es muy ortodoxa, pues faltan los elementos correspondientes a la fracción más gruesa.

Tomadas todas las muestras en conjunto, la relación aplanamiento desgaste no queda muy clara, pues mientras que el desgaste disminuye conforme aumenta el tamaño de los guijarros, el aplanamiento es el mismo para todas las longitudes (cuadro III).

Espectro granulométrico de la fracción comprendida entre 20 y 60 mm

La mediana en la fracción gruesa la encontramos bastante pequeña, pues en ningún caso llega a ser de 40 mm. Oscila entre 38.5 y 26 mm, siendo mucho más pequeña en la desembocadura que en el resto del cauce (cuadro V).

Es completamente lógico que los materiales pierdan volumen durante el transporte y que cuanto más largo sea éste más disminuyan los tamaños,

Cuadro V

Espectro granulométrico de la fracción comprendida entre 20 y 60 mm.

<table>
<thead>
<tr>
<th></th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4</th>
<th>E-5</th>
<th>E-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med.</td>
<td>38.5</td>
<td>38.5</td>
<td>33.0</td>
<td>36.5</td>
<td>31.0</td>
<td>29 mm</td>
</tr>
<tr>
<td>20-30</td>
<td>24</td>
<td>20</td>
<td>38</td>
<td>26</td>
<td>45</td>
<td>57 %</td>
</tr>
<tr>
<td>30-40</td>
<td>32</td>
<td>43</td>
<td>26</td>
<td>51</td>
<td>31</td>
<td>19 %</td>
</tr>
<tr>
<td>40-50</td>
<td>27</td>
<td>22</td>
<td>25</td>
<td>12</td>
<td>12</td>
<td>15 %</td>
</tr>
<tr>
<td>50-60</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>8 %</td>
</tr>
<tr>
<td>Mo.</td>
<td>30-40</td>
<td>30-40</td>
<td>20-30</td>
<td>30-40</td>
<td>20-30</td>
<td>20-30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E-7</th>
<th>E-8</th>
<th>E-9</th>
<th>E-10</th>
<th>E-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med.</td>
<td>35</td>
<td>31</td>
<td>28</td>
<td>28</td>
<td>26 mm</td>
</tr>
<tr>
<td>20-30</td>
<td>34</td>
<td>49</td>
<td>67</td>
<td>61</td>
<td>81 %</td>
</tr>
<tr>
<td>30-40</td>
<td>36</td>
<td>19</td>
<td>32</td>
<td>26</td>
<td>19 %</td>
</tr>
<tr>
<td>40-50</td>
<td>19</td>
<td>32</td>
<td>1</td>
<td>12</td>
<td>0 %</td>
</tr>
<tr>
<td>50-60</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0 %</td>
</tr>
<tr>
<td>Mo.</td>
<td>30-40</td>
<td>20-30</td>
<td>20-30</td>
<td>20-30</td>
<td>20-30</td>
</tr>
</tbody>
</table>

fenómeno que, como más adelante veremos, también se da en la fracción inferior a 2 mm. Si en algún caso se producen ciertas anomalías, son debidas a causas de tipo local.

Es en el estudio de los fenómenos que provocan este empequeñecimiento donde existen ciertas discrepancias, pues, según PEttijohn, la disminución de los materiales acarreados por los ríos está condicionada íntimamente por la pendiente. Sin embargo, Plumeley (1948) ha observado que existen otros factores (la descarga media del río y la dureza de los materiales) que también...
influyen en la disminución del tamaño. Otros, como Shulits (1941), suponen que es la abrasión la única responsable en la disminución del tamaño, por lo que el perfil del río está en función de la dureza de los materiales acarreados 10.

El máximo de los histogramas está comprendido entre 20 y 40 mm (fig. 6). La clase modal de estas gravas oscila bastante (entre el 24 % en la estación número 1 al 81 % en la número 11), pero en general podemos decir que es muy elevada, bien que disminuiría algo si se redujeran los intervalos. Esta elevación aumenta desmesuradamente en las estaciones del litoral, donde pasa del 60 %, debido a la desaparición de los tamaños mayores.

LITOGEOLOGÍA

El elemento que aparece en mayores proporciones es la caliza, seguida por la arenisca roja o rodeno y otras areniscas, predominando éstas sobre aquél en las muestras 9 y 11, que son las de la playa, mientras que en el resto ocurre a la inversa.

Las estaciones situadas en el Barranc de Portacoeli o del Cerezo tienen un porcentaje de caliza muy elevado, mientras que el rodeno es casi insignificante, ya que la rambla sólo cruza afloramientos de estas areniscas en su cabecera, para entrar en seguida en las calizas del Muschelkalk y, más hacia el S, en las del Suprakeuper.

En el Barranc de Nàquera, los porcentajes de rodeno aumentan considerablemente, aunque están aún lejos de alcanzar los de la caliza. Esta tiene su origen en el Suprakeuper del cerro de Realsaders y en el Muschelkalk que aparece a continuación. El rodeno lo adquiere gracias a los afloramientos

CUADRO VI

Litología. Porcentajes del número de cantos

<table>
<thead>
<tr>
<th>Estación</th>
<th>Caliza %</th>
<th>Rodeno %</th>
<th>Arenisca %</th>
<th>Carroñola %</th>
<th>Conglomerado %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>57</td>
<td>20</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>39</td>
<td>39</td>
<td>13</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>25</td>
<td>14</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>19</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>51</td>
<td>24</td>
<td>19</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>35</td>
<td>19</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>53</td>
<td>18</td>
<td>18</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>20</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>33</td>
<td>23</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>60</td>
<td>15</td>
<td>21</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

10 Ibid., pp. 527-30.
de Buntsandstein inferior, que cruza en los alrededores de Serra y Nàguera.

En la cabecera del Carraixet, la proporción de caliza es muy semejante a la de rodeno, puesto que ha excavado su cacao sucesivamente sobre calizas y areniscas. No ocurre así en la estación situada al N de Olocau, donde el cacao lo forman estratos de areniscas rojas, por lo que la proporción de éstas entre los sedimentos aumenta desmesuradamente.

El resto de las estaciones han sido constituidas sobre terrenos miocenos y cuaternarios y en ellas el predominio de las calizas es absoluto. Esto es debido a que la resistencia de este material es superior a la del rodeno, que se meteoriza y disgrega rápidamente transformándose en arena, al ser fácilmente atacable según los planos de estratificación eólica.

Para terminar, señalaremos algunos hallazgos de material volcánico en la playa, junto a la desembocadura, donde es bastante elevada la proporción de augita. Estos hallazgos han sido considerados por J. PÉREZ MATRO y J. J. ALONSO (1957) como probables aportes de materiales volcánicos procedentes de las Columbretes o de su cola de lava submariña. Sin embargo, ROSSÉLLO piensa que tales fragmentos no pueden proceder actualmente de estas islas, pues entre ellas y la tierra firme existe un canal de 80 m de profundidad, por lo que hay que buscar su origen en afloramientos cercanos a la actual costa.

Granulometría de la fracción inferior a 2 mm

En cada una de las estaciones hemos tomado 100 g de muestra, de la que hemos separado la fracción inferior a 0,06 mm (arcillas y limos) y la superior a 2 mm, por lo que las curvas acumulativas comprenden solamente la fracción arenosa. Posteriormente hemos agrupado de nuevo el sedimento, para lo cual se ha adoptado el límite que propone la norma DIN 4023: Arena gruesa, 2 a 0,6 mm; arena intermedia, 0,6 a 0,2 mm; arena fina, 0,2 a 0,06 mm; limos y arcillas, fracción inferior a 0,06 mm.

Cuadro VII

Distribución percentual del material inferior a 2 mm., según la norma DIN 4032

<table>
<thead>
<tr>
<th></th>
<th>M-1</th>
<th>M-2</th>
<th>M-3</th>
<th>M-4e</th>
<th>M-4t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracción superior a 2 mm.</td>
<td>1'74</td>
<td>10'84</td>
<td>0'486</td>
<td>2'320</td>
<td>0'500</td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>0'64</td>
<td>25'24</td>
<td>0'311</td>
<td>50'730</td>
<td>0'380</td>
</tr>
<tr>
<td>Arena intermedia</td>
<td>6'89</td>
<td>37'64</td>
<td>14'611</td>
<td>39'560</td>
<td>14'970</td>
</tr>
<tr>
<td>Arena fina</td>
<td>58'53</td>
<td>13'49</td>
<td>47'513</td>
<td>1'600</td>
<td>47'550</td>
</tr>
<tr>
<td>Fracción inferior a 0,06 mm.</td>
<td>32'20</td>
<td>12'79</td>
<td>37'179</td>
<td>5'790</td>
<td>36'600</td>
</tr>
</tbody>
</table>

11 Benayas Casares, J., y Pérez Mateos, J., «Las Columbretes como probable origen de la ferroaugita existente en los arenales costeros de una zona de Levante (España)», *Boletín de la Sociedad Española de Historia Natural* (Geol.), t. 65, n.° 1 (1967), p. 27.

EL BARRANC DEL CARRAIXET

<table>
<thead>
<tr>
<th>Fracción superior a 2 mm.</th>
<th>M-5</th>
<th>M-6</th>
<th>M-7</th>
<th>M-8</th>
<th>M-9a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracción superior a 2 mm.</td>
<td>1'150</td>
<td>2'780</td>
<td>2'730</td>
<td>0'350</td>
<td>0'</td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>11'850</td>
<td>20'210</td>
<td>8'910</td>
<td>0'690</td>
<td>0'32</td>
</tr>
<tr>
<td>Arena intermedia</td>
<td>54'260</td>
<td>51'630</td>
<td>46'060</td>
<td>10'880</td>
<td>41'27</td>
</tr>
<tr>
<td>Arena fina</td>
<td>18'440</td>
<td>13'910</td>
<td>25'910</td>
<td>67'330</td>
<td>58'41</td>
</tr>
<tr>
<td>Fracción inferior a 0'06 mm.</td>
<td>14'300</td>
<td>11'470</td>
<td>15'390</td>
<td>20'750</td>
<td>0'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracción superior a 2 mm.</th>
<th>M-9b</th>
<th>M-9c</th>
<th>M-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fracción superior a 2 mm.</td>
<td>0'26</td>
<td>0'26</td>
<td>0'26</td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>0'26</td>
<td>0'26</td>
<td>0'26</td>
</tr>
<tr>
<td>Arena intermedia</td>
<td>16'69</td>
<td>29'51</td>
<td>17'12</td>
</tr>
<tr>
<td>Arena fina</td>
<td>83'31</td>
<td>70'23</td>
<td>82'88</td>
</tr>
<tr>
<td>Fracción inferior a 0'06 mm.</td>
<td>0'</td>
<td>0'</td>
<td>0'</td>
</tr>
</tbody>
</table>

1) Según Trask (1932), la selección perfecta sería 1; la inferior a 2'5, buena; 3, normal, y la superior a 4'5, mala\(^\text{13}\); luego podemos hablar de una selección muy buena en la fracción arenosa de todas nuestras estaciones, pues S en ningún caso sobrepasa 1'783.

2) La simetría es muy buena en todos los casos, y llega a ser perfecta en algunos, aunque existe una tendencia a estar mejor clasificada la fracción fina que la gruesa.

Cuadro VIII

Fracción arenosa

<table>
<thead>
<tr>
<th>Ø</th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño mm</td>
<td>%</td>
<td>% acum.</td>
<td>%</td>
</tr>
<tr>
<td>2-1'19</td>
<td>0'45</td>
<td>0'45</td>
<td>9'69</td>
</tr>
<tr>
<td>1'19-0'59</td>
<td>0'51</td>
<td>0'96</td>
<td>23'36</td>
</tr>
<tr>
<td>0'59-0'35</td>
<td>1'86</td>
<td>2'82</td>
<td>24'84</td>
</tr>
<tr>
<td>0'35-0'210</td>
<td>8'57</td>
<td>11'39</td>
<td>24'45</td>
</tr>
<tr>
<td>0'210-0'105</td>
<td>45'72</td>
<td>57'11</td>
<td>14'34</td>
</tr>
<tr>
<td>0'105-0'063</td>
<td>42'89</td>
<td>100'00</td>
<td>3'32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ø</th>
<th>E-4t</th>
<th>E-4c</th>
<th>E-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño mm</td>
<td>%</td>
<td>% acum.</td>
<td>%</td>
</tr>
<tr>
<td>2-1'19</td>
<td>0'28</td>
<td>0'28</td>
<td>9'71</td>
</tr>
<tr>
<td>1'19-0'59</td>
<td>0'31</td>
<td>0'59</td>
<td>45'50</td>
</tr>
<tr>
<td>0'59-0'35</td>
<td>2'06</td>
<td>2'65</td>
<td>33'56</td>
</tr>
<tr>
<td>0'35-0'210</td>
<td>21'75</td>
<td>24'40</td>
<td>9'50</td>
</tr>
<tr>
<td>0'210-0'105</td>
<td>63'05</td>
<td>87'45</td>
<td>1'57</td>
</tr>
<tr>
<td>0'105-0'063</td>
<td>12'55</td>
<td>100'00</td>
<td>0'16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tamaño mm</th>
<th>E-6</th>
<th></th>
<th>E-7</th>
<th></th>
<th>E-8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>% acum.</td>
<td>%</td>
<td>% acum.</td>
<td>%</td>
<td>% acum.</td>
</tr>
<tr>
<td>2-1'19</td>
<td>5'18</td>
<td>5'18</td>
<td>1'74</td>
<td>1'74</td>
<td>0'32</td>
<td>9'32</td>
</tr>
<tr>
<td>1'19-0'59</td>
<td>18'38</td>
<td>23'56</td>
<td>9'13</td>
<td>10'87</td>
<td>0'54</td>
<td>0'86</td>
</tr>
<tr>
<td>0'59-0'35</td>
<td>27'45</td>
<td>51'01</td>
<td>31'87</td>
<td>31'87</td>
<td>1'47</td>
<td>1'47</td>
</tr>
<tr>
<td>0'35-0'210</td>
<td>32'77</td>
<td>87'78</td>
<td>35'26</td>
<td>35'26</td>
<td>12'33</td>
<td>12'33</td>
</tr>
<tr>
<td>0'210-0'105</td>
<td>1'38</td>
<td>98'16</td>
<td>26'80</td>
<td>26'80</td>
<td>45'74</td>
<td>45'74</td>
</tr>
<tr>
<td>0'105-0'063</td>
<td>1'84</td>
<td>100'00</td>
<td>6'07</td>
<td>100'00</td>
<td>39'60</td>
<td>100'00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tamaño mm</th>
<th>E-9a</th>
<th></th>
<th>E-9b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>% acum.</td>
<td>%</td>
<td>% acum.</td>
</tr>
<tr>
<td>2-1'19</td>
<td></td>
<td></td>
<td>0'32</td>
<td>0'32</td>
</tr>
<tr>
<td>1'19-0'59</td>
<td>3'75</td>
<td>4'07</td>
<td>0'24</td>
<td>0'24</td>
</tr>
<tr>
<td>0'59-0'35</td>
<td>0'09</td>
<td>4'16</td>
<td>0'01</td>
<td>0'01</td>
</tr>
<tr>
<td>0'35-0'29</td>
<td>37'43</td>
<td>41'59</td>
<td>16'44</td>
<td>16'44</td>
</tr>
<tr>
<td>0'29-0'21</td>
<td>48'53</td>
<td>90'12</td>
<td>62'37</td>
<td>62'37</td>
</tr>
<tr>
<td>0'21-0'14</td>
<td>9'53</td>
<td>99'65</td>
<td>20'49</td>
<td>20'49</td>
</tr>
<tr>
<td>0'14-0'10</td>
<td>0'35</td>
<td>100'00</td>
<td>0'45</td>
<td>100'00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tamaño mm</th>
<th>E-9c</th>
<th></th>
<th>E-11</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>% acum.</td>
<td>%</td>
<td>% acum.</td>
</tr>
<tr>
<td>2-1'19</td>
<td></td>
<td></td>
<td>0'26</td>
<td>0'26</td>
</tr>
<tr>
<td>1'19-0'59</td>
<td>1'32</td>
<td>1'58</td>
<td>0'06</td>
<td>0'06</td>
</tr>
<tr>
<td>0'59-0'35</td>
<td>0'14</td>
<td>1'72</td>
<td>0'02</td>
<td>0'02</td>
</tr>
<tr>
<td>0'35-0'29</td>
<td>28'05</td>
<td>29'77</td>
<td>17'04</td>
<td>17'04</td>
</tr>
<tr>
<td>0'29-0'21</td>
<td>53'77</td>
<td>83'54</td>
<td>64'65</td>
<td>64'65</td>
</tr>
<tr>
<td>0'21-0'14</td>
<td>16'13</td>
<td>99'67</td>
<td>17'95</td>
<td>17'95</td>
</tr>
<tr>
<td>0'14-0'10</td>
<td>0'33</td>
<td>100'00</td>
<td>0'28</td>
<td>100'00</td>
</tr>
</tbody>
</table>

No está muy clara la relación entre los tamaños medios y la asimetría, pues, mientras que INMAN indicó que los sedimentos más finos deben tener por lo general una pronunciada asimetría de la curva de frecuencia hacia la fracción fina, GRIPEMBREG (1934) ha observado que muchos de los sedimentos del fondo del mar Báltico septentrional son asimétricos hacia los gramos más gruesos 14. Nuestros resultados se aproximan más a la teoría de Inman, pero no faltan, sin embargo, excepciones que podrían confirmar la de Gripemberg.

3) El valor normal de la Kurtosis (K) es 0'263, y cuando es menor nos indica que la curva está empinada (KELLEY) 15. En todas las muestras aquí

Cuadro IX

Parámetros de la fracción arenosa

<table>
<thead>
<tr>
<th></th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qd</td>
<td>0'17</td>
<td>0'78</td>
<td>0'21</td>
<td>0'21</td>
</tr>
<tr>
<td>Qg</td>
<td>0'08</td>
<td>0'245</td>
<td>0'118</td>
<td>0'118</td>
</tr>
<tr>
<td>Md</td>
<td>0'112</td>
<td>0'42</td>
<td>0'155</td>
<td>0'155</td>
</tr>
<tr>
<td>P10</td>
<td>0'069</td>
<td>0'14</td>
<td>0'09</td>
<td>0'09</td>
</tr>
<tr>
<td>P90</td>
<td>0'23</td>
<td>1'19</td>
<td>0'29</td>
<td>0'30</td>
</tr>
<tr>
<td>Sb =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'456</td>
<td>1'783</td>
<td>1'330</td>
<td>1'330</td>
</tr>
<tr>
<td></td>
<td>1'084</td>
<td>1'083</td>
<td>1'028</td>
<td>1'028</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0'0724</td>
<td>0'2730</td>
<td>0'0920</td>
<td>0'0966</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E-4c</th>
<th>E-5</th>
<th>E-6</th>
<th>E-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qd</td>
<td>0'94</td>
<td>0'48</td>
<td>0'59</td>
<td>0'42</td>
</tr>
<tr>
<td>Qg</td>
<td>0'44</td>
<td>0'22</td>
<td>0'24</td>
<td>0'17</td>
</tr>
<tr>
<td>Md</td>
<td>0'64</td>
<td>0'3</td>
<td>0'36</td>
<td>0'27</td>
</tr>
<tr>
<td>P10</td>
<td>0'33</td>
<td>0'13</td>
<td>0'15</td>
<td>0'11</td>
</tr>
<tr>
<td>P90</td>
<td>1'15</td>
<td>0'79</td>
<td>1'00</td>
<td>0'68</td>
</tr>
<tr>
<td>Sb =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'459</td>
<td>1'476</td>
<td>1'564</td>
<td>1'571</td>
</tr>
<tr>
<td></td>
<td>1'009</td>
<td>1'173</td>
<td>1'092</td>
<td>0'973</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0'2050</td>
<td>0'0858</td>
<td>0'1445</td>
<td>0'0712</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E-5</th>
<th>E-9a</th>
<th>E-9b</th>
<th>E-9c</th>
<th>E-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qd</td>
<td>0'18</td>
<td>0'23</td>
<td>0'19</td>
<td>0'23</td>
<td>0'19</td>
</tr>
<tr>
<td>Qg</td>
<td>0'084</td>
<td>0'16</td>
<td>0'14</td>
<td>0'15</td>
<td>0'14</td>
</tr>
<tr>
<td>Md</td>
<td>0'12</td>
<td>0'20</td>
<td>0'16</td>
<td>0'19</td>
<td>0'15</td>
</tr>
<tr>
<td>P10</td>
<td>0'068</td>
<td>0'14</td>
<td>0'13</td>
<td>0'12</td>
<td>0'13</td>
</tr>
<tr>
<td>P90</td>
<td>0'26</td>
<td>0'26</td>
<td>0'23</td>
<td>0'25</td>
<td>0'23</td>
</tr>
<tr>
<td>Sb =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1'462</td>
<td>1'195</td>
<td>1'152</td>
<td>1'238</td>
<td>1'152</td>
</tr>
<tr>
<td></td>
<td>1'071</td>
<td>0'920</td>
<td>1'039</td>
<td>0'955</td>
<td>1'182</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0'092</td>
<td>0'004</td>
<td>0'025</td>
<td>0'005</td>
<td>0'025</td>
</tr>
</tbody>
</table>

analizadas, el índice de Kurtosis es muy bajo, salvo la número 2, que sobrepasa el valor normal; por lo tanto, las curvas son empinadas, en forma de ese.

4) Las medianas oscilan entre 0'11 y 0'64, pero la mayoría las encontramos situadas entre 0'2 y 0'1, por lo que se puede hablar de un predominio
de las arenas finas, aunque el porcentaje de las intermedias es también muy elevado.

5) Después de numerosos análisis mecánicos, Pettijohn (1940) se dio cuenta de una deficiencia del material comprendido entre 4 y 2 mm y entre 2 y 1 mm y, con toda probabilidad, en el intervalo de 0'12 a 0'06 mm, pues la clase modal cae en muy pocos ocasiones en estos grados.

También hemos comprobado esta deficiencia en los tamaños de 2 a 1'19 mm y en los de 0'105 a 0'06. Además, en las arenas de playa que hemos estudiado, el porcentaje de arena correspondiente al intervalo de 0'35 a 0'29 mm es escasísimo.

Pettijohn da varias explicaciones a estas lagunas de material:

a) Que los materiales, en los grados que se consideran, fuesen producidos por meteorización y disgregación de las rocas, pero que nunca se depositaron como una clase modal por razones hidráulicas.

b) Que desaparecieran durante el proceso de transporte, por inestabilidad mecánica.

c) Que existiese una diferencia primaria de ciertas clases de grado, pues

Fig. 7.—Distribución por tamaños de toda la fracción inferior a 2 mm

\[\text{Ibid., p. 53.}

\[\text{[22]}\]
Fig. 8.—Curvas acumulativas del material arenoso de las estaciones 7 y 8
Fig. 9.—Curvas acumulativas del material arenoso de las estaciones 6 y 1
Fig. 10.—Curvas acumulativas del material arenoso de las estaciones 2-3-4c-4t y 5
quizá al descomponerse la roca no se produzcan por igual todos los tamaños.

Estación 7.—La moda se encuentra en la arena intermedia y la fracción gruesa está mejor clasificada que la fina.

Estación 8.—La clase modal corresponde a la arena fina, y el porcentaje de arenas y limos es superior al de la estación anterior. Esto es consecuencia de la disminución potencial de la corriente, lo que hace que se depositen elementos más finos. La fracción fina está mejor clasificada que la gruesa.

![Diagrama de proporciones](image)

Fig. 11.—Curvas acumulativas del material arenoso de las estaciones 9a-9b-9c y 11

Estación 6.—En la composición de esta muestra hay un claro predominio de arena gruesa e intermedia, situándose la moda entre 0.6 y 0.2 mm. La fracción fina está algo más clasificada que la gruesa.

Estación 1.—Los mayores porcentajes de acumulación corresponden a los tamaños inferiores a 0.2 mm, que representan el 90% del total (fig. 7). Incluso teniendo en cuenta solamente la fracción arenosa, el material fino es todavía predominante (cuadro VIII).

A la vista de los resultados obtenidos en estas cuatro muestras, se ve que el material fino aumenta conforme nos acercamos a la desembocadura.

Estación 3.—La roca madre aflora en el lecho, por lo que tuvimos que tomar la muestra de la orilla, lugar donde disminuye la fuerza de la corriente y es abundante el depósito de arcillas y arenas finas. Así se explica la anormalidad de que el porcentaje de material fino sea muy elevado.

Estación 2.—El mayor porcentaje corresponde a la arena intermedia, pero es también muy elevada la proporción de arena gruesa y de la fracción superior a 2 mm. Es la muestra peor seleccionada de todas las estudiadas y está
mejor clasificada la arena fina. El índice de Kurtosis es también el más elevado de todas las muestras, superior al valor normal, por lo que la curva resultante es la menos empinada.

Estación 5.—El porcentaje de arena intermedia destaca ampliamente sobre todas las demás. La fracción fina está mejor clasificada que la gruesa y es la curva más asimétrica de todo el grupo.

Las estaciones 4t y 4c corresponden al mismo sitio, pero, sin embargo, su composición es muy diferente. La 4c fue recogida en el fondo del cauce, y la 4t, en una pequeña terraza de 1'5 m de altura.

Estación 4c.—La arena gruesa e intermedia dan los máximos porcentajes. La mediana y el tercer cuartil alcanzan los mayores valores de todas las estaciones observadas.

Estación 4t.—Es la arena fina la más abundante y está mejor seleccionada que la anterior. La fracción fina tiene mejor clasificación que la gruesa.

Estaciones 9a, 9b, 9c y 11.—La arena gruesa no existe o es despreciable, por lo que tiene una moda elevadísima situada entre 0'2 y 0'06 mm. Las curvas acumulativas son todas muy parecidas, en forma de ese muy empinada, por lo que todas nos dan un bajo índice de Kurtosis.

BIBLIOGRAFÍA NO CITADA EN NOTAS

18 Alonso Pascual realizó algunos análisis de minerales pesados en las arenas del Carraixet, donde encontró en gran proporción turmalina (entre el 21 y el 40% en las diferentes estaciones), circon (25-38%) y dolomita (3-20%). En la desembocadura del Barranco del Cerezo también determinó un elevado porcentaje de turmalina (36%), circon (41%) y dolomita (10%). En el Barranco de Náquera predominan también la turmalina (30%), circon (37%) y dolomita (12%). El mismo autor observó que casi todas las especies minerales se presentan como subangulares o muy angulares, de lo que se deduce una escasa acción erosiva en el transporte y un origen secundario para los ejemplares muy rodados.

A la vista del pequeño desgaste de los granos minerales y del mucho mayor correspondiente a los elementos comprendidos entre 20 y 60 mm, podemos suponer que la acción erosiva ejercida sobre unos sedimentos y otros es muy diferente, como consecuencia del distinto tamaño y composición.
DUPUY DE LÔME, E., Explicación de la Hoja n.° 668 (Sagunto) del Mapa Geológico de España, escala 1:50.000, Madrid, Instituto Geológico y Minero de España, 1959, 80 pp.
DUPUY DE LÔME, E., y SÁNCHEZ LOZANO, Explicación de la Hoja n.° 695 (Liria) del Mapa Geológico de España, escala 1:50.000, Madrid, Instituto Geológico y Minero de España, 1958, 77 pp.
GRIENEISEN, STINA, A study of the sediments of the North Baltic and adjoining seas, Fennia, 1934, t. 60, n.° 3.
TEMPLEDO MARTÍNEZ, D., y MESEGUER PARDO, J., Explicación de la Hoja n.° 696 (Burjasot) del Mapa Geológico de España, escala 1:50.000, Madrid, Instituto Geológico y Minero de España, 1951, 52 pp.